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Abstract

Atomistic simulations of the growth of helium bubbles in metals are performed.  The
metal is represented by embedded atom method potentials for palladium.  The helium
bubbles are treated via an expanding repulsive spherical potential within the metal lattice.
The simulations predict bubble pressures that decrease monotonically with increasing
helium to metal ratios.  The swelling of the material associated with the bubble growth is
also computed.  It is found that the rate of swelling increases with increasing helium to
metal ratio consistent with experimental observations on the swelling of metal tritides.
Finally, the detailed defect structure due to the bubble growth was investigated.
Dislocation networks are observed to form that connect the bubbles.  Unlike early model
assumptions, prismatic loops between the bubbles are not retained.  These predictions are
compared to available experimental evidence.
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Introduction:

The accumulation of helium in metals or metal tritides is known to result in the formation
of helium bubbles in the lattice and to produce a swelling of the lattice [1,2,3].  The
helium can be introduced either through implantation or in the case of tritides it is
introduced via the radioactive decay of the tritium.  The goal of the present study is to use
large-scale atomistic simulations to investigate this process.  In particular, the swelling
associated with the introduction of helium and the resulting pressures in the bubble are
evaluated.  In addition, the nature of the defects produced during the bubble growth is
examined.  One of the values of atomistic simulations is that one can examine in detail
the resulting defect structure.  This work represents a continuation of earlier atomistic
studies [4] that looked at the growth of a single small bubble.  The current work is
motivated by the ability to consider more realistic bubble densities and sizes and to
consider systems with multiple bubbles.

There are numerous previous theoretical and experimental studies of helium bubble
growth in the past [1,2].   Wolfer and co-workers examined the requirements for bubble
growth via dislocation loop-punching mechanisms [1,6].  In these models the energetics
associated with the growth of the helium bubble via the emmision of a prismatic
dislocation loop are analyzed.  This model provides a prediction of the bubble pressures
required for bubble growth. These treatments assume the dislocation loops are retained
after they are created via the punching process.  This assumption leads to the prediction
that in arrays of bubbles, the bubble pressure will initially decline as the bubbles grow but
will then rapidly increase with further bubble growth.  The rapid increase reflects the
repulsive interaction between the existing dislocation loops between the bubbles and new
loops that must be formed for further bubble growth.  More recently, a growth model has
been proposed by Chrzan and Wolfer[7] which considers the possibility of growth via
dislocation pipe diffusion.  This model postulates that in a bubble array dislocations
segments will connect the bubbles.  Thus a crucial question exists as to the nature of the
dislocation structures that are produced during the bubble growth process.  This issue will
be addressed in the present work.

In this paper, the growth of a helium bubble array will be examined using atomistic
computer simulations.  The swelling and bubble pressures associated with the growth will
be monitored.  The swelling predictions are then compared to experimental observations
of swelling in order to assess the validity of the simulations.  Most importantly, the
evolution of the defect structure between the bubbles will be analyzed and compared to
the assumptions made by the existing continuum level descriptions of the bubble growth.

Computational Approach:

The basic approach employed in this paper is to perform an explicit molecular dynamics
(MD) simulation of the bubble growth process.  In this approach the dynamics of the
bubble growth process are followed at the atomic scale.  There are two advantages of this
approach.  First, the detailed mechanism associated with the growth process does not
have to be assumed.  The mechanism falls out of the simulation of the collective atomic
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motion.  The other advantage is that the results can be analyzed in greater detail than in
experiment.  Since the simulations have all of the atomic positions, it is possible to
analyze the evolution is great detail.  The intent is to use the qualitative understanding of
the evolution of the defect structure in future work to motivate the development of
appropriate continuum level descriptions of the bubble growth process.

There are also a couple of limitations to this simulation method  that need to be kept in
mind.  These are related to the length and time scales at which these simulations are
performed.  For simulations over long times as will be needed here, computational
limitations restrict the size of the system to on the order of a million atoms.  For a cube of
material in a fcc lattice, this corresponds to a cube of material a little under 25 nm on a
side.  Since a typical interbubble spacing in a metal tritide is on the order of 12 nm [8],
the simulations will only be able to hold a small number of bubbles, for example 4.  The
other limitation is the time scale of the simulations.  Again computational resources limit
the time scale to the order of several nano-seconds.  This is sufficient if the processes of
interest are mechanically driven or athermal as is suspected in this case.  However, if the
actual mechanism depends on thermally activated events, the simulations may miss those
processes.

The molecular dynamics simulations require a description of the interatomic interactions.
The approach used here is the embedded atom method (EAM).  This approach has been
widely used to study the thermal and defect properties of late and nobel transition metals.
This approach is described in detail and various applications are reviewed by Daw, Foiles
and Baskes [9] and by Foiles [10].  In addition, reviews by Carlsson [11], by Raeker and
DePristo [12] and by Nørskov [13] compare this approach to other similar approaches.
The EAM potentials have the advantage of incorporating some of the dominant
characteristics of metallic bonding while maintaining computational efficiency that is
similar to that of simple pair interaction models.  In the current study, new EAM
potentials for Pd were used.  Prior potentials were deficient in the description of the
stacking fault energy.  This is a key quantity for the structure and motion of dislocations
that presumably will be an important aspect of the bubble growth process.  The details of
the EAM energy expression and the details of the Pd potentials used here are given in
Appendix A.

The molecular dynamics are performed using standard algorithms that have been
implemented into the code PARADYN by Plimpton [14,15].  This code is a parallel
version of the serial code DYNAMO developed by Foiles and Daw [9].  These codes
were written separately and cross-comparisons between the codes have been performed
to verify the reliability of the codes.  The simulations are performed at constant
temperature and constant external pressure.  The temperature is controlled via explicit
rescaling of the velocities.  The pressure is controlled using the method due to Paranello
and Rahman [16].  These standard techniques allow the simulations to be performed in
the constant NPT or isobaric-isothermal ensemble.  Small-scale initial simulations were
performed on various desktop workstations.  The large-scale simulations were performed
on ‘Janus’, the ASCI teraflop computer.
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The current work focuses on the growth of inert gas bubbles in Pd.  The method of the
introduction of the inert gas will not be directly simulated.  He is known to diffuse
rapidly through the bulk metal lattice until it reaches a trapping site [4].  In the current
simulation, the trapping sites are the bubbles forming in the lattice.  Thus the He can be
considered to be added directly to the bubble since it spends a negligable time in the
lattice compared to the aging time of the real physical system.  The first and most direct
way to simulate the bubble growth is to add He atoms regularly to the bubbles and let the
system evolve.  This is the approach that was used in the earlier studies [4].  This
approach has the advantage of making few assumptions about the resulting shape of the
bubble and also provides a direct way to determine the pressure in the bubble.

The disadvantage of this approach is that it is impractical for the study of large bubbles.
The range of helium content in the metal that is of interest goes to 40-50% helium to
metal.  As discussed above, the simulation cell will need to contain on the order 105 to
106 metal atoms and so will have to contain about half that number of helium atoms at the
end of the simulations.  Prior experience on the growth of helium bubbles by the direct
addition of atoms [4] indicated that one needs several picoseconds (10-12 sec) for the
system to relax from the addition of a single atom.  This would require a simulation of
hundreds of nanoseconds.  That is unfeasible even with teraflop computing resources.

An alternate method of studying the evolution of the metal due to bubble growth has been
developed.  The key point is that the dense inert gas acts like a nearly incompressible
inclusion in the metal.  The presence of such an inclusion can be simulated by imposing a
repulsive external potential on the metal atoms in the lattice that exclude the metal atoms
from a spherical region.  The growth of the bubble is modeling by the expansion of the
volume inside of the repulsive potential.  This approach has the appealing feature that the
detailed dynamics of the inert gas atoms inside of the bubble does not need to be
followed explicitly.  This detailed behavior should have no effect on the response of the
metal lattice except to determine the equation of state of the high density helium.  The
pressure in the bubble can be determined from the force exerted by the external potential
on the metal atoms.  Given the pressure and temperature in the bubble, the density of
inert gas can be determined from the known equation of state of He.  Given the volume of
the inclusion and the inert gas density, the equivalent number of helium atoms in the
bubble can be determined.  In this manner, the bubble pressure and defect microstructure
of the metal can be determined as a function of the helium content during the course of
the simulation.  The details of this procedure are described in Appendix B.

In order to assess the validity of this approach, small simulations were performed for the
growth of helium bubbles in Ni.  The simulations were performed in two ways.  In the
first simulation, the bubble growth was performed via the sequential addition of He
atoms.  In the second simulation, the bubble growth was performed via the repulsive
potentials.  In Figure 1, a slice of the metal lattice from both simulations is presented.
Note that the helium atoms are not shown in the second and that the bubble is larger in
thesecond case.   The important point is that the qualitative nature of the atomic
arrangements in the metal surrounding the bubble is the same in both cases.  The mail
feature is the rectangualr array of faults that surround the bubble. In both cases, th bubble



7

is surrounded by prismatic dislocation loops. This establishes the validity of the bubble
growth approach that will be used below.

The results to be discussed were obtained from the simulation of  two systems.  The first
system is a smaller system containing one bubble per periodic unit cell.  The simulation
cell started with 32,000 metal atoms.  The system is periodic in all directions with sides
of  length 20 a0 = 77.8 Å which yields a cell volume of 4.71 x 10-19 cm3.  Since there is a
single bubble in each cell, the total initial bubble density is 2.12 x 1018 cm-3.  This is
somewhat larger than the typical experimental density of bubbles in metal tritides.  Since
the periodic cell is cubic with one bubble, the system simulated actually represents a
simple cubic lattice of bubbles in the material.

A second more realistic system was also simulated.  The simulation cell started with
256,000 metal atoms.  This is a cubic fcc lattice with sides of length 40 a0 = 155.6 Å.
The total initial volume of the cell is therefore 3.77 x 106 Å3 = 3.77 x 10-18 cm3.  Four
bubbles are introduced into this cell.  This gives a total initial bubble density of 1.06 x
1018 cm-3 which is a realistic bubble density for metal tritides.  The bubbles are located in
an approximately fcc supercell arrangement within the cubic cell.  The positions of the
bubbles are displaced by a few percent from the ideal fcc supercell arrangement.  The
choice of a fcc arrangement was made to give a close-packed array of bubbles.  The small
deviation of the bubbles from this arrangement was to avoid artifacts that might result
from an artificially high symmetry of the bubble arrangements.  The bubbles each have
the same size during the course of the bubble growth.  The simulations are performed
with periodic boundary conditions in all three directions.  Thus the simulations represent
a periodic array of bubbles.

Results:

The simulations of bubble growth were carried out till the number of He atoms per metal
atom (He/M) ratio reached about 0.58 for the case of the small bubble system and about
0.39 for the case of the large system.  Figure 2 presents a plot of the bubble pressure as a
function of the inferred He/M ratio for the small system, the large system and the two
combined. The bubble pressure is initially quite high (in excess of 200 kilobars) and then
drops with time and increasing bubble size to the range of 30-40 kilobars.  Unlike some
earlier predictions [6], the bubble pressure is not observed to increase at high He/metal
ratios. The values of the bubble pressures for the two systems are very similar, though
there is a systematic difference in that the larger system, which has a lower overall
density of bubbles, has somewhat smaller bubble pressures.

The computed pressure has strong fluctuations on two different time scales.  This can be
seen in Figure 3 which plots the pressure as a function of the simulated time.  There is a
very rapid fluctuation of ±5 kilobars.  This reflects the thermal fluctuations inherent in all
molecular dynamics simulations of pressure.  There is another longer time-scale type of
variation that gives the curves a somewhat saw tooth appearance. This is believed to be a
result of discrete events in the relaxation of the bubble.  In particular, the bubble pressure
increases until there is a structural relaxation event that causes the system to relax and
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lower the bubble pressure.  This event is assumed to be the emission of dislocation loops,
though this has not been observed directly in the simulation.

Another way to view the bubble pressure data is as a function of bubble radius.  In Figure
4, we plot the product of the bubble pressure times the bubble radius as a function of the
bubble radius.  This choice of form is motivated by suggestions that the bubble pressure
will scale inversely with the bubble radius as will be discussed below.  In that picture,
this plot should be roughly constant.  In fact, there is a range of radii for which the
product of P*R fluctuates around 13,000 – 14,000 ergs/cm2.  It then drops somewhat for
larger values.

The simulations are performed at constant zero external pressure.  Thus the volume of the
computational cell increases as the bubbles grow.  Tracking the cell volume as a function
of the inferred He/M ratio allows for the determination of the swelling.  The swelling is
of interest for a variety of reasons.  One issue associated with the swelling is the
blistering that can occur in the vicinity of He implantation. Swelling is also of interest
because it can be measured experimentally for the case of tritides.  This provides a means
of validating the predictions of the modeling.

The swelling associated with the bubble growth for the large system is shown in Figure 5
as a function of inferred He/M ratio.  The swelling is given by S = (V-V0)/V0 where V is
the current volume of the system and V0 is the original volume in the absence of the
bubbles.  Note that the swelling again has the jagged structure that was also seen in the
bubble pressure.  It is also important to note that the swelling does not increase linearly
with the helium content.  This reflects the reduction in pressure of the helium bubbles
with growth and the corresponding increase in the volume associated with each helium
atom. The plot also includes a fit of the swelling data to a quadratic polynomial.  The fit
polynomial is

27662.06796.0 xxS +=
where S is the swelling defined above and x is the He/Metal ratio.

.

The final type of information that can be obtained from the simulation is insight into the
defect structure that evolves during the bubble growth.  This is important for the future
development of continuum models.  One of the advantages of the simulation is that it
allows one to examine the defect structure in greater detail than is possible with
experiment.  A significant challenge in the analysis of the defect structure is the data
reduction.  In particular, the visualization of the defect structure is challenging since
simply imaging the atomic structure does not allow one to see the defects.  The large
regions of perfect crystal obscure the defects.  In order to visualize the defect structure, it
is therefore important to be able to identify those atoms that are in perfect crystal
environments and those that are in local defect environments.  Here we use the
centrosymmetry parameter first introduced by Kelchner, Plimpton and Hamilton [18].
This parameter measures the degree to which the nearest neighbor environment of a
given atom is locally a center of inversion symmetry.  The determination of this
parameter is described in Appendix C.  This parameter will vanish in a perfect fcc crystal
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due to the inversion symmetry of the lattice and will continue to vanish for the case of
uniform strain.  The quantity becomes non-zero at structural defects including surfaces,
planar faults, dislocation cores, and point defects.  Substantial insight into the defect
structure can be gained by just visualizing those atoms which have a value of the
centrosymmetry parameter above a cut-off value.

Figure 6 shows the defect structure fairly early in the bubble growth process when the
He/Metal ratio was about 0.04 in the large cell case.  There are two views of the structure
shown.  In a), the shading is based on the value of the centrosymmetry parameter.  In b),
the shading represents the position of the atoms normal to the page of the view.  In this
figure, one sees three types of defect structures in addition to the atoms surrounding the
bubble.  (The atoms at the surface of the bubble do not have inversion symmetry and so
have non-zero values of the centrosymmetry parameter.)  First, there are some small
isolated clusters of defected atoms. More detailed analysis of the structure of these
clusters reveals that they are associated with lattice vacancies.  The centrosymmetry
parameter will be non-zero for each of the nearest neighbors of the vacant site.  Second,
there are close-packed planes of atoms immediately adjacent to the bubbles.  This is
particularly evident for the bubbles at the bottom of the figure.  These structures represent
dislocation loops created by the growth of the bubble.  Finally, there are long filamentary
structures extending away from the bubbles.  These have been identified as dislocations.

Figure 7 shows the defect structure at a much later stage around He/M ~ 0.4.  Note that
the bubbles, which are identified by the atoms near the surface are much larger.  In this
case, one no longer sees the flat dislocation loops around the perimeter of some of the
bubbles as was seen at the earlier stages of bubble growth.  There are a significant
number of small clusters of defected atoms.  These are associated with point defects in
the lattice.  There is also what appears to be a stacking fault tetrahedron in the upper left
corner of the image.  The main other defect structures seen are dislocations that thread
between the bubbles.

Discussion

The helium bubble pressures predicted in the current simulations are in reasonable accord
with experimental investigations. Determinations of  the density of helium in bubbles in a
variety of metals has been reviewed  by Donnelly [1].  The values of the helium densities
reported are in the range of a 1022 cm-3 to 4 x 1023 cm-3.  Assuming a bulk equation of
state, these densities correspond to pressures ranging from about a kbar to over 1000
kbar.  The pressures determined here are within this broad range.  There is a
determination of He bubble pressure for bubbles in Pd tritides performed by Abell and
Attalla [24].  These measurements used NMR techniques to observe the temperature of
the helium melting transition and from this deduce the corresponding He bubble pressure.
The experiments were performed on palladium tritide that had been aged for about one
year and so had a He/M =0.03.  They observed a range of bubble pressures from 60 – 110
kbar.  This is completely consistent with the pressure computed here for these small
values of the He/M ratio.
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Continuum models of the bubble growth would benefit from a simple expression for the
bubble pressure.  Trinkhaus [25, 1] has proposed a very simple expression for the
pressure of moderate size bubbles.  His proposed expression is

R

b
P

µγ += 2  .

In this expression, γ is the surface energy of the bubble, µ is the shear modulus of the
metal and b  is the burger’s vector of the assumed prismatic loop.  The results presented
above show that the product of the the bubble pressure with the bubble radius is roughly
constant over a range of bubble radii up to around 35Å.  The value is in reasonble accord
wth the expression due to Trinkhaus.  If one assumes that the surface energy of the
bubble is the same as the free surface energy of Pd, than γ2  = 4000 ergs/cm2.  If one take
the shear modulus to be the Voight average shear and the Burger’s vector to be that
appropriate for a prismatic loop, than bµ = 12,000 ergs/cm2.  This gives a total value of
16,000 ergs/cm2 which is 15% higher than the values obtained in the simulations.  Given
the simplicity of the model, this is good agreement suggesting that the Trinkhaus
expression is a useful simple result for estimating bubble pressure.

The swelling of pure metals due to the introduction of He cannot be readily observed
experimentally.  However, the swelling of metal tritides has been measured for a variety
of metals.  In metal tritides, the radioactive decay of the tritium introduces He into the
lattice.  If the tritide is aged under a constant overpressure, then the tritium content of the
tritide is constant and the volume change of the sample is associated with the swelling
due to the growth of He bubbles in the lattice.  This swelling can be compared to the
swelling computed here if one assumes that the deformation mechanism is not
qualitatively changed between the metal and hydride.  Since the underlying crystal
structures of the metal atoms are the same in both cases, this is not an unreasonable
assumption.  To quantitatively compare the swelling, one needs to account for the fact
that the lattice constant of the hydride phase is larger than that of the pure metal.  Here
we will make the simplest correction for that effect.  The change in volume associated
with a given He/M ratio will be taken from the calculations described above.  The initial
volume, though, will be assumed to be that of the hydride phase as opposed to the pure
metal phase.  This should capture the main difference in the swelling between the two
materials.

The swelling predicted for the tritide based on the calculations for the large system with
the above correction for the hydride volume difference is plotted in Figure 8.  This plot
also contains experimental results for the swelling of palladium tritide.  The data for the
lower values of He/M is based on length change measurements of palladium tritide
performed by Guthrie. [7,23].  The other measurements are from NMR determinations of
the He density by Abell [21,22].  Note that the NMR and length change measurements
are in reasonable agreement at low values of He/M where both data exists.  It is
encouraging that the current swelling estimates are in good agreement with the
experimental measurements especially considering the simplicity of the correction from
the results for the pure metal to the hydride.  It is particularly important to note that the
swelling rate increasing as the He/M increases both for the experimental data and for the
simulation results.  This reflects the reduction in the average He bubble pressure that is
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predicted in the simulations.  The lower bubble pressure implies lower He density in the
bubbles and so more swelling required to accommodate the He.  Thus the observed
upturn of the experimental swelling curve confirms the qualitative behavior of the
computed bubble pressure.  It is also important to note the comparison of the
experimental data and the current results with the predictions of the early loop punching
model of Wolfer [3,6] which is also plotted on Figure 8.  That work predicted a swelling
that is roughly linear in He/M with a slight reduction in the swelling rate at high He/M.
This reflects the prediction of this early model that the He bubble pressure would rise at
higher He/M.  The current results and experiment are in disagreement with this
prediction.

The prediction of the microstructure that results from the growth of the helium bubbles is
an important aspect of the current results. The present results indicate that a dislocation
network should form between the bubbles at least for the case of a dense bubble array.
The present results also indicate that one does not accumulate a large number of prismatic
loops between the bubbles as was envisioned in some of the earlier modeling work of
Wolfer [6].  These results are not inconsistent with experimental observations of bubble
growth in metals.  There have been TEM observations of prismatic dislocation loops
punched from bubbles in V [19,26].  However, the prismatic loops were only observed
for low densities of bubbles.  For high densities of bubbles, a dislocation network was
observed near the bubbles.  In a recent experimental study of Pd alloys [27], a large
number of defects were observed in the first three months.  These defects were
interpreted by the authors as being due to a high density of dislocations and to large
numbers of clusters of self-interstitial atoms.  In particular, these observations did not see
the retention of prismatic loops for this case of bubble growth in a palladium tritide.

Summary:

These simulations have examined the response of a metal lattice to the growth of a dense
array of inert gas bubbles.  The bubble densities considered here are similar to those
observed to form due to the aging of metal tritides.  The pressure of helium in the bubble
is predicted to decrease monotonically with increasing helium to metal ratio.  The
magnitudes of the pressure are in accord with various experimental estimates of the
bubble pressure in metal tritides.  The swelling of the metal due to the tritides is also
predicted.  The rate of swelling is computed to increase with increasing helium to metal
ratio consistent with experimental observations on the swelling of metal tritides.  The
detailed defect structure resulting from the bubble growth is observed.  It is found that a
dislocation network forms that connects the bubbles.  This is contrary to some early
assumptions by Wolfer [6] that prismatic loops would form and be retained between the
bubbles.  It is consistent, though, with a later suggestion by Chrzan and Wolfer [7] that
dislocation pipes will connect the bubbles.  This in turn suggests that their pipe difusion
model deserves further study.
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Appendix A:

New EAM potentials for Pd were developed for these simulations.  There are two reasons
why the existing potentials for Pd [28, 29] were not adequate.  The stacking fault energies
and the surface energies of the prior potentials are substantially too low.  The stacking
fault energy is a key parameter in determining the dislocation core structure and it was
felt to be important to have correct dislocation structures since that is key to the
deformation behavior of the material.  The potentials were fit to the equilibrium lattice
constant, the equation of state, the elastic constants, the vacancy formation energy, the
intrinsic stacking fault energy and the surface energy.  The functional forms for the fit
followed the work of Voter and Chen [29].

The details of the potential are as follows.  In the EAM [9], the total energy is expressed
by the usual equation

)(
2
1))((

,
ij

jiij
ij

ij
ijj

i
i RRfFE

≠≠

+= φ

where i and j refer to atoms, Rij is the separation of atoms i and j, f(R) is electron density
function, F is the embedding function and φ is the pair interaction.  The pair potential, φ,
is expressed in a Morse potential form

}1]1))({[exp()( 2
0 −−−−= RRAR βφ

with the parameter values A = 1.21433 eV, β = 0.79689 Å-1 and Ro = 2.21645 Å.  The
electron density function is given by

)}2exp(2)exp({)( 3 RRRRBRf mmm γγ −+−= +

with the parameter values B=1, m=8 and γ = 3.16413 Å-1.  Both of these functions are
truncated at Rcut with the same procedure.  A function of distance, g(R), is modified to

)('1)()()( cut

n

cut

cut
cut Rg

R

R

n

R
RgRgRg

�

�
�

�

�

��
�

��
�

�
−+−→

with n=20 and Rcut = 5.35 Å.  Finally, the embedding function is determined numerically
to obtain agreement with the equation of state of the solid as described in detail by Foiles
[31].  For this reason the overall scale of the electron density function, f(R), is arbitrary.
Thus the value of B was simply taken to be unity.

The properties that result from this fit are summarized in the following table.  Note that
both the surface and stacking fault energies are reproduced well in addition to good
results for the elastic moduli and the vacancy formation energies.
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Desired Fit
a0 (Å) 3.89 3.89
Esub (eV) 3.91 3.91
C11 (1012 ergs/cm3) 2.341 2.392
C12 (1012 ergs/cm3) 1.76 1.735
C44 (1012 ergs/cm3) 0.712 0.656
Evac

form 1.54 1.58
γsf (ergs/cm2) 188 187
γsurf (ergs/cm2) 2000. 1958
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Appendix B:

The external potential associated with the bubble i centered at the position iR
�

is defined
as follows.  The potential at R is determined in terms of a scaled distance from the center

given by 
L

RRR
d

Bi −−
=

��

 where A
�

 denotes the norm of the vector and RB is the radius

of the bubble.  The potential is given by a cosine form for –1/2 < d < 0, namely,

))cos(1(
2
1)( 0 dVdV π−= .

For d>0, V(d) = 0 and for d< -1/2,

))
2
1(1(

2
1)( 0 +−= dVdV π .

The parameter values L = 2 Å and V0 = 25 eV were chosen here.  Numerical experiments
indicate that the results are not very sensitive to the exact choice of these parameters.
The bubble radius is chosen to increase with the cube root of the time so that the bubble
volume increases linearly with time.  In particular, the bubble volume was chosen to
increase at a rate of 25Å3/ps = 25 10-12 cm3/s.

The inert gas pressure is determined from the net force that is applied to the surrounding
metal atoms.  The normal force exerted by the external potential on all of the metals
atoms is summed and then divided by the surface are of the bubble.  This yields the net
pressure inside of the bubble.

The pressure and temperature of the inert gas is then used to determine the density of the
inert gas.  For this purpose we use the empirical equation of state for helium developed
by Mills, Liebenberg and Bronson [17] which is given by

112/1

3/23/12/1

)84.189641.1910604.00596.1(
)024549.0483.12()2645.70064655.0575.22(

−−−

−−−

+−++
−−+−+=

PTTT

PTPTTV
 .

In this expression, V is the molar volume in cm3, P is the pressure in kilobars and T is the
temperature in Kelvin.



17

Appendix C:

The centrosymmetry parameter is determined in a somewhat different manner here than
in the original implementation of Kelchner, Plimpton and Hamilton [18].  The original
implementation relied on knowledge of the position of the 12 nearest neighbors in a
reference-undistorted lattice with the same orientation as the original crystal.  These
nearest neighbors in the reference lattice are group into pairs i and i+6 which have
opposing nearest neighbor vectors.  One then identified the atoms in the actual system
which are closest to these reference neighbor positions and calculated the quantity

2

6,1
6

=
++=

i
ii RRP
��

.  For a perfect fcc crystal, this sum will vanish since each term of the

sum is zero.  This implementation has the disadvantage that one must know the
macroscopic orientation of the crystal and adjust the algorithm accordingly.  This is a
practical inconvenience.  In addition, if there has been a local rotation of the lattice due to
deformation, this algorithm may also fail.

The current algorithm computes a similar quantity, but it does not rely on a reference set
of nearest neighbor vectors.  The first step is to identify the set of 12 nearest neighbors of
a given atom and the vectors, iR

�

, to each of them.  One then computes the value of
2

ji RR
��

+  for all 66 combinations of i<j.  The six smallest values are then summed to

obtain the centrosymmetry parameter.  In the case of a perfect fcc lattice, six of the values
will vanish which corresponds to the cases where i and j refer to opposing nearest
neighbors. The advantage of the current implementation is that it does not require an a
priori knowledge of the crystal orientation.  In the vicinity of a defect, the
centrosymmetry parameter will be non-zero.  This includes any defect which local breaks
to inversion symmetry of a site.  This includes surfaces, stacking faults, dislocation cores
and point defects to name a few possibilities.
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Figure Captions:

Figure1.  Comparison of the structure of obtained via the sequential addition of He atoms
(a) with the structure obtained via an expanding repulsive potentia (b).  See text for
discussion.  In a) the green atoms are the helium atoms whereas in b) the empty space
represents the area that would be filled with helium.  Note that the figures are for
somewhat different bubble sizes.  In both case, though, the same type defect structure
surrounds the bubbles.

Figure 2.  The He bubble pressure in kilobars as a function of the helium to metal (He/M)
ratio for a) the small system, b) the large system and c) both systems.  See text for the
definition of the two systems.

Figure 3.  The time dependence of the bubble pressure for a) the small system and b) the
large system.  The small time variations are typical MD variations of the pressure.  The
longer time sawtooth variations is assumed to reflect individual athermal relaxation
events.

Figure 4.  The product of the bubble pressure with the bubble radius as a function of the
bubble radius for the larger system.  (Less pressure data was recorded during the initial
stages of the simulation which explains the lack of fine scale fluctuations in the initial
portion of the curve.)

Figure 5.  The computed swelling of the metal due to the growth of the He bubbles as a
function of the inferred helium to metal ratio.  The solid curve is a fit to the data.

Figure 6.  View of the defect structures in the large system at a helium to metal ratio of
0.04.  Only those atoms with a non-zero value of the centrosymmetry parameter (see text)
are plotted.  In a) shading is based on the value of the centrosymmetry parameter.  The
shading is a blackbody scale with brighter atoms being more defected.  In b) the shading
is based on the position of the atoms normal to the page with darker atoms in the back.

Figure 7.  Same as Figure 6b except for a helium to metal ratio of 0.4.

Figure 8.  Comparison of the predicted swelling adjusted to the case of a tritide (see text)
compared with experimental estimates of the swelling.  See text for references.
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Figure 5
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Figure 6
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